

Code Collage: Tangible Programming
On Paper With Circuit Stickers

Abstract
We present Code Collage, a new tangible programming
construction kit that blends the functionality of
programming with the materiality of paper craft. The
kit is made of circuit sticker electronic modules with
inputs and outputs that are connected together with
conductive tapes to create computational systems. On-
sticker interfaces enable creators to play with the
behavior of the sticker, and thus the program, through
physical tinkering. This paper shares the preliminary
set of code stickers, an example code collage using LED
outputs and reflects on the interactive affordances of
such a toolkit.

Author Keywords
Paper electronics; paper circuits; paper computing;
tangible programming; physical computing; stickers.

ACM Classification Keywords
H.5.m Information interfaces and presentation (e.g.,
HCI): Miscellaneous.

Introduction
Programming enables the systems we build to perform
complex operations. According to Seymour Papert, in
the process of teaching these systems the operations,
that is, in programming them, we also illuminate our
own thinking process. By laying out our thoughts as

Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses,
contact the Owner/Author.
Copyright is held by the owner/author(s).
CHI'17 Extended Abstracts, May 06-11, 2017, Denver, CO, USA
ACM 978-1-4503-4656-6/17/05.
http://dx.doi.org/10.1145/3027063.3053084

Jie Qi
MIT Media Lab
Cambridge, MA 02144, USA
jieqi@media.mit.edu

Asli Demir
MIT Media Lab
Cambridge, MA 02144, USA
aslid@mit.edu

Joseph A. Paradiso
MIT Media Lab
Cambridge, MA 02144, USA
Joep@mit.edu

Late-Breaking Work CHI 2017, May 6–11, 2017, Denver, CO, USA

1970

code, we also turn them into materials with which we
can analyze our thinking [17], a powerful way to learn
not only programming but also learning itself. As a
result, computational thinking and programming have
become integral literacies for learners today. In this
paper we explore how to support learning programming
through manipulating physical materials, rather than
code behind a screen, specifically through an expansion
of the circuit sticker toolkit [9][20]. We blend the
functionality of programming with the material and
expressive flexibility of paper, with the goal to engage
learners in programming through creating personally
meaningful, interactive artifacts.

We created a preliminary a set of modules called code
stickers. Individual code stickers are standalone
electronic modules that are electrically connected using
conductive tape lines to construct functioning
programs, called Code Collage. Inspired by the wire
patch construction style of modular synthesizers [18],
which enable musicians to physically tinker with
connections to produce expressive sound, this kit aims
to support physical tinkerability so that creators not
only make functioning programmed electronics but also
expressive physical artworks. The graphical
programming style follows the dataflow structure of
visual programming languages like Max/MSP [13], but
stickers take the flowchart off screen and into the
physical world.

Related Work
Our code collage programming platform builds upon
bodies of research in tangible programming
construction kits, paper electronics and sticker-based
circuit building and programming. Tangible
programming languages use physical modules for

constructing programs, providing a hands-on
alternative to traditional text-based code for
introducing novice programmers to computation.

Many early tangible programming toolkits use physical
blocks to program a computer with behaviors shown on
a screen such as AlgoBlocks [26] and Tern [11]. As
electronics became affordable enough to build into the
blocks themselves, toolkits used visual block-based
programming interfaces on the computer screen to
program the physical blocks like Lego Mindstorms and
PicoCricket [22]. While these approaches separate
physical artifacts from digital graphics behind a screen,
other kits use only physical electronic modules. Early
examples include Electronic Blocks [27] and Tangible
Programming Blocks [15], which are up made of
sensing, logic, and output blocks snap together to
make functioning programs.

Current tangible programming platforms include
littleBits, which are electronic modules that snap
together with magnets [2], LightUp which enables
learners to view the inner workings of their program
through augmented reality [5] and Project Bloks, which
is an open hardware toolkit designed for users to create
their own tangible programming modules [3]. Magnetic
blocks have also been used in tangible music sequencer
programming, such as in Sony CSL’s BlockJam [16],
where blocks represent musical autonoma elements
that each have a user interface to script rules that
change the sequence and music when the token passes
through a block. We aim to build upon these
programming platforms by introducing the flexibility of
the paper and sticker medium.

Late-Breaking Work CHI 2017, May 6–11, 2017, Denver, CO, USA

1971

Paper electronics—also called paper circuits— means
integrating circuit building with paper using widely
accessible craft materials and techniques blended with
standard electronic components. To name a few,
researchers have shared paper electronics techniques
for building with gold foil gilding [23], painting [4],
screen printing [24], and conductive foil collaging [18].
Conductive inks and paints to draw [22] and print [12]
circuits on paper have become commercially available
through products like the Circuit Scribe [6] and Agic [1]
toolkits. Building upon the ecosystem of paper
computing toolkits, like the Teardrop toolkit [4], we aim
to take advantage of the expressiveness and
accessibility of such paper-based approaches in our
code collage approach.

Many toolkits use adhesive modules specifically for
building interactive electronics and in programming.
Stickers are commonly used as tags in the form of RFID
or visual markers in interactive systems, such as the
interactive sticker storybook [10] and tangible
programming robot toolkit [8]. The stickers can also be
functional electronic modules assembled together to
build more complex circuitry. For example, the I/O
stickers are electronic modules used to enable youth to
build interactive wireless communication interfaces in
an electronic scrapbook [7]. Chibitronics circuit stickers
are used to teach novices how to build simple circuitry
using LED sticker modules and an activity book [19].
Our current investigations build upon these sticker-
based toolkits by focusing on computation—using
circuit stickers to build the physical electronic system
as well as the code that controls such systems,
enabling more complex behaviors and engaging
creators in tangible programming.

Code Collage Construction Kit
Our preliminary implementation of Code Collage
includes the modules shown in Figure 1: light sensor,
voltage divider (called a tuner), compare logic module,
and record/playback module. These serve as a basic
demonstration of signal generation and introducing
computational complexity as well as more advanced
output behaviors through logic and record/playback
modules. The signal from such a code collage can be
used to activate various types of outputs such as LED
lights for graphical displays, speakers for sound, motors
and other actuators for kinetic sculptures.

Figure 1: Code Collage modules: light sensor (upper left),
voltage divider/tuner (lower left), record/playback module
(upper right), compare (lower right).

Each code sticker is a circuit made with copper tape
circuitry on paper substrate with printed labels. An
ATtiny85 is used to program logic and record/playback
functionality while a blend of Chibitronics circuit stickers
and analog components are used to create the sensor
and tuner modules. The modules are shaped like
arrows that point in the direction of signal flow with
input at the back of the arrow and output at the point
of the arrow. Each sticker has individual power tabs at

Late-Breaking Work CHI 2017, May 6–11, 2017, Denver, CO, USA

1972

the bottom edge and an LED displaying the output
signal at the top edge. Creators can add more LEDs in
parallel to the display LED use the signal for their scene
or drive other actuators like miniature speakers or
sound modules, in addition to using the signal for
coding functionality.

Code stickers have on-sticker interfaces for adjusting
behavior without the need for an additional display
(Figure 2). For example the tuner has a rotary wheel
to control the output signal voltage. Some stickers can
be controlled by manual controls as well as input pads
that respond to electrical signals from other stickers,
enabling more complex code collage systems. For
instance, to make the record/playback module play,
one can press the on-sticker button or trigger the play
input pad with a signal. This module also has a “done
playing” output pad which sends a pulse when the
sequence finishes. One can connect this output to the
play pad to trigger repeating looped playback.
Physically making this connection with copper tape
draws a line from the point of the arrow to the base,
creating a graphical loop that mirrors the repeating
loop playback behavior.

TRANSLATING INSTRUCTION-BASED
PROGRAMS INTO CODE COLLAGE
A core goal of code stickers is to translate the
computational functionality of instruction-based
programming into physical materials, so that one
“programs” the circuit through physical manipulation
and the behavior of the program is built into its
physical form. As an example translation, we explore
how to code the pattern of a blinking LED light, which is
where novices often begin their journeys in learning to
program circuits. In instruction-based programming,

this requires writing code to specify the sequence of
turning on and off the light, and the duration of delays
in between. The alternative through code collage is to
use the record/playback module to record a pattern of
button presses to produce the desired pattern, inspired
by the demonstrate-and-record style of programming in
Topobo [21]. Instead of needing to translate their
pattern into written programming instruction, the
creator simply demonstrates the pattern by hand,
which can often be more intuitive.

However, by the same token, creators are limited to
coding only patterns that they can physically generate.
Creators lose the precision and power of behaviors
specified by instruction-based code—where if you can
describe it, the circuit can do it—creators must instead
figure out ways to generate the pattern they want.
This motivates exploring different types of materials
and sensors to create the proper electrical signal.

In the case of making a hard LED blinking pattern,
creators can record using a pushbutton, which will only
turn the light fully on or fully off. However, if they
wanted a softer effect, they could record from a
pressure sensor, which allows a light to fade on and off.
Programming through this method becomes like playing
an instrument—the outcome depends on one’s physical
dexterity and preserves the hand of the creator. The
interaction is like manipulating a singer’s recorded
voice with looping and effects machines, rather than
starting from digitally synthesized tones. Starting with
the complexity and texture of manual input results in
very different effects from starting with pure code.

Once creators generate their base signal, they can
more complex behaviors by integrating with other code

Figure 2: Adjusting tuner sticker
with knob (A and B). Triggering
playback with the onboard button
(C), with an external signal (D)
and with the Done Playing pin for
repeating lopped playback (E)

Late-Breaking Work CHI 2017, May 6–11, 2017, Denver, CO, USA

1973

stickers. For example, logic modules like the compare
sticker enable the equivalent of instruction-based if and
while statements, and feeding back control signals to
inputs through logic functions of various sorts can
generate very complex behavior.

PHYSICALITY OF CODE COLLAGE
Figure 3 shows an example code collage composed of a
light sensor, tuner, compare sticker and
record/playback sticker. This figure shows how copper
tape lines electrically connect signals from one module
to the next as well as “draw” a graphical mapping of
the signal flow. In the same way that written and
block-based code makes programs legible and editable
through text and image, respectively, code collage
transforms the program into a functioning schematic of
the electrical system whose behavior can both be
visually interpreted and physically manipulated. In
addition, since the construction is on a paper substrate,
learners can further annotate their code collages with
writing or drawings.

Being able to physically arrange code elements
anywhere on the page also enables creators to spatially
organize their thoughts and their code. In my example
skyline circuit, I placed the sensor and light outputs on
the upper portion of the page while the logical
operations are placed at the bottom. As the code
becomes more complex, if connections need to cross,
creators can simply place a piece of paper between the
lines for insulation building their code both across the
page as well as vertically in layers. Since code collages
are flat, different subcategories of code can also be split
into multiple pages and assembled into code booklets.
Circuitry from different pages can connect at the
booklet’s spine through matching, overlapping traces.

Using multiple pages opens additional dimensions for
physical organization and gives a sequential structure
to the code, going from one page to the next.

While these initial explorations put code collage on two-
dimensional pages, it is also possible to build collages
on three-dimensional forms like a computational skin,
or even make moving mechanisms that double as code
elements. One can imagine, for example, a
mechatronic assembly where part of the assembly is a
switch input in for the code.

DESIGN REFLECTIONS
In the process of designing and constructing our kit, we
came up with several preliminary observations about
the benefits, drawbacks and challenges for
programming circuitry through code collaging:

- Space constraints: since the program is built with
physical modules and connections, rather than lines of
code which can scroll on the screen, the physical size of
the program grows with its complexity. Since the
modules are flat, one way to create more space is to
add more pages. Nevertheless, the larger and more
complex the physical program, the more mechanical
issues will likely arise such as the electrical integrity of
connections, storage of physically large programs and
change of physical degradation over time. This is the
nature of any physical, modular system.
- Power: Every module needs to be individually
powered. However, the power lines take up space and
add visual confusion to the code collage. They also
make modules more difficult to move around. One idea
is to separate power lines by putting them on the back
of the page. Power tabs on each code sticker can
puncture the page or fold over an edge.

Figure 3: Example code collage
of city skyline that glows when
the sun is blocked (above) and
overlaid secondary story where
the stars shine when the moon is
blocked (below). The playback
sticker triggers when the light
sensor detects levels below the
set threshold.

Late-Breaking Work CHI 2017, May 6–11, 2017, Denver, CO, USA

1974

- Readability: While all elements of the program are
visually presented, it is not clear to me that this style of
visual programming is more readable or more intuitive
to use than traditional text-based code representations
of programs. For example, the many lines between
inputs and outputs may end up cluttered, like looking
at tangled strings. However, with practice I imagine a
“spatial grammar” might also emerge to make
programs more legible, such as placing power and
ground rails along the page border or grouping related
modules by location. Such practices are common in
making clean circuit diagrams or PCB layouts. In fact,
circuit stickers have a legacy in the old pre-ECAD ‘dot
and tape’ practice of decades past, when PCBs were
laid out manually with stickers and opaque tape [14].
- Note taking: Having labels help make the visual
program much more readable. Writing notes on the
collage also helps clarify the functions of the program.
Similarly, connecting lines can be colored or marked to
add an additional layer of information.
- Tinkerability: Though the visual connections may be
harder to read, their open physical nature makes them
easier to connect and disconnect. This tightens the
feedback loop by enabling real-time testing and
iteration. Similarly, since code stickers can be easily
tuned while the sticker is running, the behavior of the
program can be adjusted in real time with immediate
feedback, offering a degree of tinkerability that is not
possible in typical text-based “compile-run” workflows.

These initial explorations also bring up the important
design question behind choosing the right vocabulary:
at what level should functions be black-boxed into
primitives? Because we are working at the level of
circuits, modules can be as low level as single
transistors and capacitors or as complex as fully pre-

programmed functions like the record/playback module.
The more functionality is pre-assembled into condensed
units, the more scaffolding the modules offer for
creators to make more complex computational
behaviors. However, if complex behaviors are too pre-
packaged, we run into the danger of removing
programming from the activity altogether, leaving only
simple plug-and-play parts. The more low-level detail
revealed to learners, the deeper their understanding of
the electronics theory underlying their creations and
the more access they have to controlling the materials’
behaviors. Ultimately there must be a balance between
easily making complex final artifacts that work and
revealing the circuit complexity to truly understand the
raw computational material.

CONCLUSION
Coding through sticking tangible modules keeps
programming in the materials domain where learners
can physically tinker with computational concepts, a
more natural form of manipulation than screen-based
objects and text. Both code and its results are
embedded directly into circuit-building so that learners
do not mentally and physically switch between hands-
on crafting with materials and procedural code on a
screen. Keeping the modules in sticker form maintains
the material and expressive affordances of paper.
Rather than making circuits and programs that abstract
into pure functionality, the ultimate products of code
collages are personalized paper electronics artifacts. As
we continue to develop Code Collage, our ultimate goal
is to broaden participation in technology creation by
framing tangible computation as a new medium
through which creators can express themselves. Our
hope is that learners and creators can one day sculpt
with electricity as they might sculpt with clay.

Late-Breaking Work CHI 2017, May 6–11, 2017, Denver, CO, USA

1975

References
1. Agic. http://agic.cc/.

2. Bdeir, A. and Ullrich,T. (2009) “Electronics as
material: littleBits.” In Proc of TEI '09, ACM, New
York, NY, USA, 397-400.

3. Blikstein, P., Sipitakiat, A., Goldstein, J., Wilbert,
J., Johnson, M., Vranakis, S., Pederson, Z. and
Carey, W. (2016.) “Project Bloks: designing a
development platform for tangible programming for
children.”
https://projectbloks.withgoogle.com/static/Project_
Bloks_position_paper_June_2016.pdf.

4. Buechley, L., Hendrix, S.and Eisenberg, M. (2009).
“Paints, paper, and programs: first steps toward
the computational sketchbook.” In Proc TEI ’09.
ACM, New York, NY, USA, 9–12.

5. Chan, J., Pondicherry, T. and Blikstein, P. (2013).
“LightUp: an augmented, learning platform for
electronics.” In Proceedings of the 12th
International Conference on Interaction Design and
Children (IDC '13). ACM, New York, NY, USA, 491-
494.

6. Circuit Scribe. http://electroninks.com/.

7. Freed, N., Qi, J., Setapen, A., Breazeal, C.,
Buechley, L. and Raffle, H. 2011. “Sticking
together: handcrafting personalized communication
interfaces.” In Proceedings of the 10th International
Conference on Interaction Design and Children
(IDC '11). ACM, New York, NY, USA, 238-241.

8. Gordon, M., Ackermann, E., and Breazeal. C. 2015.
“Social Robot Toolkit: Tangible Programming for
Young Children.” In Proceedings of the Tenth
Annual ACM/IEEE International Conference on
Human-Robot Interaction Extended Abstracts
(HRI'15 Extended Abstracts). ACM, New York, NY,
USA, 67-68.

9. Hodges, S. Villar, N., Chen, N., Chugh, T., Qi, J.,
Nowacka, D. and Kawahara, Y. (2014.) “Circuit

stickers: peel-and-stick construction of interactive
electronic prototypes.” In Proc. CHI '14. ACM, New
York, NY, USA, 1743-1746.

10. Horn, M. S., AlSulaiman, S. and Koh, J. 2013.
“Translating Roberto to Omar: computational
literacy, stickerbooks, and cultural forms.” In Proc.
IDC '13. ACM, New York, NY, USA, 120-127.

11. Horn, M and Jacob, R. (2007). “Tangible
programming in the classroom with tern.” In CHI
'07 Extended Abstracts on Human Factors in
Computing Systems (CHI EA '07). ACM, New York,
NY, USA, 1965-1970.

12. Kawahara, Y. Hodges, S., Cook, B. S., Zhang, C.
and Abowd, G. D. (2013) “Instant inkjet circuits:
lab-based inkjet printing to support rapid
prototyping of UbiComp devices.” In Proc.
UbiComp'13. ACM, New York, NY, USA, 363-372.

13. Max. (2016).
https://cycling74.com/products/max/.

14. Maxfield, C. (2011). “How It Was: PCB Layout from
Rubylith to Dot and Tape to CAD.”
http://www.eetimes.com/author.asp?section_id=1
4&doc_id=1285442

15. Mcnerney, T. (2004) “From turtles to Tangible
Programming Bricks: explorations in physical
language design.” Personal and Ubiquitous
Computing. 8, 5, (Sept 2004), 326-337.

16. Newton-Dunn, H., Nagano, H., and Gibson, J.
(2003) “Block Jam: A Tangible Interface for
Interactive Music.” In Journal of New Music
Research. 32(4):170-177 · December 2003.

17. Papert, S. Mindstorms: Children, Computers and
Powerful Ideas. BasicBooks, 1993.

18. Paradiso, J. (1977) The Design, Construction, and
Operation of an Electronic Music Synthesizer (May
1977). http://synth.media.mit.edu/.

Late-Breaking Work CHI 2017, May 6–11, 2017, Denver, CO, USA

1976

19. Qi, J. and Buechley, L. (2014.) “Sketching in
circuits: designing and building electronics on
paper.” In Proc. CHI '14. ACM, New York, NY, USA,
1713-1722.

20. Qi, J., Huang, A. and Paradiso, J. (2015) “Crafting
technology with circuit stickers.” In Proc IDC '15.
ACM, New York, NY, USA, 438-441.

21. Raffle, H., Parkes, A. and Ishii, H. (2004). “Topobo:
a constructive assembly system with kinetic
memory.” In Proc. CHI '04. ACM, New York, NY,
USA, 647-654.

22. Resnick, M., Martin, F., Berg, R., Borovoy, R.,
Colella, V., Kramer, K., and Silverman, B. (1998)
“Digital manipulatives: new toys to think with.” In
CHI ’98. ACM, New York, NY, USA, 281–287.

23. Russo, A., Ahn, B. Y., Adams, J. J., Duoss, E.b.
Bernhard, J. T. and Lewis, J. A. (2011) “Pen- on-
paper flexible electronics.” Advanced Materials,
pages 3426-3430.

24. Saul, G., Xu, C. and Gross, M. D. (2010)
“Interactive paper devices: end-user design &
fabrication.” In Proc TEI ’10. ACM, New York, NY,
USA, 205–212.

25. Shorter, M., Rogers, J., and McGhee, J. (2014)
“Practical notes on paper circuits.” In Proc. (DIS
'14). ACM, New York, NY, USA, 483-492.

26. Suzuki, H. and Kato, H. (1993). “Algoblock: a
tangible programming language, a tool for
collaborative learning.” In Proc. 4th European Logo
Conference. Athens, Greece, 297-303.

27. Wyeth, P. and Purchase, H. C. (2000).
“Programming without a computer: A new interface
for children under eight.” In the 1st Australasian
User Interface Conference, Canberra, Australia.
141–148

Late-Breaking Work CHI 2017, May 6–11, 2017, Denver, CO, USA

1977

