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Abstract 
We present Code Collage, a new tangible programming 
construction kit that blends the functionality of 
programming with the materiality of paper craft. The 
kit is made of circuit sticker electronic modules with 
inputs and outputs that are connected together with 
conductive tapes to create computational systems.  On-
sticker interfaces enable creators to play with the 
behavior of the sticker, and thus the program, through 
physical tinkering. This paper shares the preliminary 
set of code stickers, an example code collage using LED 
outputs and reflects on the interactive affordances of 
such a toolkit. 

Author Keywords 
Paper electronics; paper circuits; paper computing; 
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Introduction 
Programming enables the systems we build to perform 
complex operations.  According to Seymour Papert, in 
the process of teaching these systems the operations, 
that is, in programming them, we also illuminate our 
own thinking process.  By laying out our thoughts as 
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code, we also turn them into materials with which we 
can analyze our thinking [17], a powerful way to learn 
not only programming but also learning itself. As a 
result, computational thinking and programming have 
become integral literacies for learners today.  In this 
paper we explore how to support learning programming 
through manipulating physical materials, rather than 
code behind a screen, specifically through an expansion 
of the circuit sticker toolkit [9][20].  We blend the 
functionality of programming with the material and 
expressive flexibility of paper, with the goal to engage 
learners in programming through creating personally 
meaningful, interactive artifacts.  
 
We created a preliminary a set of modules called code 
stickers. Individual code stickers are standalone 
electronic modules that are electrically connected using 
conductive tape lines to construct functioning 
programs, called Code Collage. Inspired by the wire 
patch construction style of modular synthesizers [18], 
which enable musicians to physically tinker with 
connections to produce expressive sound, this kit aims 
to support physical tinkerability so that creators not 
only make functioning programmed electronics but also 
expressive physical artworks.  The graphical 
programming style follows the dataflow structure of 
visual programming languages like Max/MSP [13], but 
stickers take the flowchart off screen and into the 
physical world. 
 
Related Work 
Our code collage programming platform builds upon 
bodies of research in tangible programming 
construction kits, paper electronics and sticker-based 
circuit building and programming. Tangible 
programming languages use physical modules for 

constructing programs, providing a hands-on 
alternative to traditional text-based code for 
introducing novice programmers to computation.   
 
Many early tangible programming toolkits use physical 
blocks to program a computer with behaviors shown on 
a screen such as AlgoBlocks [26] and Tern [11].  As 
electronics became affordable enough to build into the 
blocks themselves, toolkits used visual block-based 
programming interfaces on the computer screen to 
program the physical blocks like Lego Mindstorms and 
PicoCricket [22].  While these approaches separate 
physical artifacts from digital graphics behind a screen, 
other kits use only physical electronic modules. Early 
examples include Electronic Blocks [27] and Tangible 
Programming Blocks [15], which are up made of 
sensing, logic, and output blocks snap together to 
make functioning programs.  
 
Current tangible programming platforms include 
littleBits, which are electronic modules that snap 
together with magnets [2], LightUp which enables 
learners to view the inner workings of their program 
through augmented reality [5] and Project Bloks, which 
is an open hardware toolkit designed for users to create 
their own tangible programming modules [3].  Magnetic 
blocks have also been used in tangible music sequencer 
programming, such as in Sony CSL’s BlockJam [16], 
where blocks represent musical autonoma elements 
that each have a user interface to script rules that 
change the sequence and music when the token passes 
through a block. We aim to build upon these 
programming platforms by introducing the flexibility of 
the paper and sticker medium. 
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Paper electronics—also called paper circuits— means 
integrating circuit building with paper using widely 
accessible craft materials and techniques blended with 
standard electronic components. To name a few, 
researchers have shared paper electronics techniques 
for building with gold foil gilding [23], painting [4], 
screen printing [24], and conductive foil collaging [18]. 
Conductive inks and paints to draw [22] and print [12] 
circuits on paper have become commercially available 
through products like the Circuit Scribe [6] and Agic [1] 
toolkits.  Building upon the ecosystem of paper 
computing toolkits, like the Teardrop toolkit [4], we aim 
to take advantage of the expressiveness and 
accessibility of such paper-based approaches in our 
code collage approach.  
 
Many toolkits use adhesive modules specifically for 
building interactive electronics and in programming. 
Stickers are commonly used as tags in the form of RFID 
or visual markers in interactive systems, such as the 
interactive sticker storybook [10] and tangible 
programming robot toolkit [8].  The stickers can also be 
functional electronic modules assembled together to 
build more complex circuitry. For example, the I/O 
stickers are electronic modules used to enable youth to 
build interactive wireless communication interfaces in 
an electronic scrapbook [7]. Chibitronics circuit stickers 
are used to teach novices how to build simple circuitry 
using LED sticker modules and an activity book [19].  
Our current investigations build upon these sticker-
based toolkits by focusing on computation—using 
circuit stickers to build the physical electronic system 
as well as the code that controls such systems, 
enabling more complex behaviors and engaging 
creators in tangible programming. 
 

Code Collage Construction Kit 
Our preliminary implementation of Code Collage 
includes the modules shown in Figure 1: light sensor, 
voltage divider (called a tuner), compare logic module, 
and record/playback module.  These serve as a basic 
demonstration of signal generation and introducing 
computational complexity as well as more advanced 
output behaviors through logic and record/playback 
modules. The signal from such a code collage can be 
used to activate various types of outputs such as LED 
lights for graphical displays, speakers for sound, motors 
and other actuators for kinetic sculptures. 

 
Figure 1: Code Collage modules: light sensor (upper left), 
voltage divider/tuner (lower left), record/playback module 
(upper right), compare (lower right). 

Each code sticker is a circuit made with copper tape 
circuitry on paper substrate with printed labels.  An 
ATtiny85 is used to program logic and record/playback 
functionality while a blend of Chibitronics circuit stickers 
and analog components are used to create the sensor 
and tuner modules. The modules are shaped like 
arrows that point in the direction of signal flow with 
input at the back of the arrow and output at the point 
of the arrow.  Each sticker has individual power tabs at 
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the bottom edge and an LED displaying the output 
signal at the top edge.  Creators can add more LEDs in 
parallel to the display LED use the signal for their scene 
or drive other actuators like miniature speakers or 
sound modules, in addition to using the signal for 
coding functionality. 

Code stickers have on-sticker interfaces for adjusting 
behavior without the need for an additional display 
(Figure 2).  For example the tuner has a rotary wheel 
to control the output signal voltage.  Some stickers can 
be controlled by manual controls as well as input pads 
that respond to electrical signals from other stickers, 
enabling more complex code collage systems.  For 
instance, to make the record/playback module play, 
one can press the on-sticker button or trigger the play 
input pad with a signal.  This module also has a “done 
playing” output pad which sends a pulse when the 
sequence finishes.  One can connect this output to the 
play pad to trigger repeating looped playback.  
Physically making this connection with copper tape 
draws a line from the point of the arrow to the base, 
creating a graphical loop that mirrors the repeating 
loop playback behavior.   

TRANSLATING INSTRUCTION-BASED 
PROGRAMS INTO CODE COLLAGE 
A core goal of code stickers is to translate the 
computational functionality of instruction-based 
programming into physical materials, so that one 
“programs” the circuit through physical manipulation 
and the behavior of the program is built into its 
physical form. As an example translation, we explore 
how to code the pattern of a blinking LED light, which is 
where novices often begin their journeys in learning to 
program circuits.  In instruction-based programming, 

this requires writing code to specify the sequence of 
turning on and off the light, and the duration of delays 
in between.  The alternative through code collage is to 
use the record/playback module to record a pattern of 
button presses to produce the desired pattern, inspired 
by the demonstrate-and-record style of programming in 
Topobo [21].  Instead of needing to translate their 
pattern into written programming instruction, the 
creator simply demonstrates the pattern by hand, 
which can often be more intuitive.  

However, by the same token, creators are limited to 
coding only patterns that they can physically generate.  
Creators lose the precision and power of behaviors 
specified by instruction-based code—where if you can 
describe it, the circuit can do it—creators must instead 
figure out ways to generate the pattern they want.  
This motivates exploring different types of materials 
and sensors to create the proper electrical signal.   

In the case of making a hard LED blinking pattern, 
creators can record using a pushbutton, which will only 
turn the light fully on or fully off.  However, if they 
wanted a softer effect, they could record from a 
pressure sensor, which allows a light to fade on and off.  
Programming through this method becomes like playing 
an instrument—the outcome depends on one’s physical 
dexterity and preserves the hand of the creator.  The 
interaction is like manipulating a singer’s recorded 
voice with looping and effects machines, rather than 
starting from digitally synthesized tones. Starting with 
the complexity and texture of manual input results in 
very different effects from starting with pure code. 

Once creators generate their base signal, they can 
more complex behaviors by integrating with other code 

  

Figure 2: Adjusting tuner sticker 
with knob (A and B).  Triggering 
playback with the onboard button 
(C), with an external signal (D) 
and with the Done Playing pin for 
repeating lopped playback (E) 
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stickers.  For example, logic modules like the compare 
sticker enable the equivalent of instruction-based if and 
while statements, and feeding back control signals to 
inputs through logic functions of various sorts can 
generate very complex behavior. 

PHYSICALITY OF CODE COLLAGE 
Figure 3 shows an example code collage composed of a 
light sensor, tuner, compare sticker and 
record/playback sticker.  This figure shows how copper 
tape lines electrically connect signals from one module 
to the next as well as “draw” a graphical mapping of 
the signal flow.  In the same way that written and 
block-based code makes programs legible and editable 
through text and image, respectively, code collage 
transforms the program into a functioning schematic of 
the electrical system whose behavior can both be 
visually interpreted and physically manipulated.  In 
addition, since the construction is on a paper substrate, 
learners can further annotate their code collages with 
writing or drawings. 

Being able to physically arrange code elements 
anywhere on the page also enables creators to spatially 
organize their thoughts and their code. In my example 
skyline circuit, I placed the sensor and light outputs on 
the upper portion of the page while the logical 
operations are placed at the bottom. As the code 
becomes more complex, if connections need to cross, 
creators can simply place a piece of paper between the 
lines for insulation building their code both across the 
page as well as vertically in layers.  Since code collages 
are flat, different subcategories of code can also be split 
into multiple pages and assembled into code booklets.  
Circuitry from different pages can connect at the 
booklet’s spine through matching, overlapping traces. 

Using multiple pages opens additional dimensions for 
physical organization and gives a sequential structure 
to the code, going from one page to the next.  

While these initial explorations put code collage on two-
dimensional pages, it is also possible to build collages 
on three-dimensional forms like a computational skin, 
or even make moving mechanisms that double as code 
elements.  One can imagine, for example, a 
mechatronic assembly where part of the assembly is a 
switch input in for the code. 

DESIGN REFLECTIONS 
In the process of designing and constructing our kit, we 
came up with several preliminary observations about 
the benefits, drawbacks and challenges for 
programming circuitry through code collaging: 
 
- Space constraints: since the program is built with 
physical modules and connections, rather than lines of 
code which can scroll on the screen, the physical size of 
the program grows with its complexity.  Since the 
modules are flat, one way to create more space is to 
add more pages.  Nevertheless, the larger and more 
complex the physical program, the more mechanical 
issues will likely arise such as the electrical integrity of 
connections, storage of physically large programs and 
change of physical degradation over time.  This is the 
nature of any physical, modular system. 
- Power: Every module needs to be individually 
powered.  However, the power lines take up space and 
add visual confusion to the code collage. They also 
make modules more difficult to move around.  One idea 
is to separate power lines by putting them on the back 
of the page.  Power tabs on each code sticker can 
puncture the page or fold over an edge.  

 

 

Figure 3: Example code collage 
of city skyline that glows when 
the sun is blocked (above) and 
overlaid secondary story where 
the stars shine when the moon is 
blocked (below). The playback 
sticker triggers when the light 
sensor detects levels below the 
set threshold. 
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- Readability: While all elements of the program are 
visually presented, it is not clear to me that this style of 
visual programming is more readable or more intuitive 
to use than traditional text-based code representations 
of programs.  For example, the many lines between 
inputs and outputs may end up cluttered, like looking 
at tangled strings.  However, with practice I imagine a 
“spatial grammar” might also emerge to make 
programs more legible, such as placing power and 
ground rails along the page border or grouping related 
modules by location.  Such practices are common in 
making clean circuit diagrams or PCB layouts.  In fact, 
circuit stickers have a legacy in the old pre-ECAD ‘dot 
and tape’ practice of decades past, when PCBs were 
laid out manually with stickers and opaque tape [14].  
- Note taking:  Having labels help make the visual 
program much more readable.  Writing notes on the 
collage also helps clarify the functions of the program.  
Similarly, connecting lines can be colored or marked to 
add an additional layer of information.   
- Tinkerability: Though the visual connections may be 
harder to read, their open physical nature makes them 
easier to connect and disconnect.  This tightens the 
feedback loop by enabling real-time testing and 
iteration.  Similarly, since code stickers can be easily 
tuned while the sticker is running, the behavior of the 
program can be adjusted in real time with immediate 
feedback, offering a degree of tinkerability that is not 
possible in typical text-based “compile-run” workflows.  

These initial explorations also bring up the important 
design question behind choosing the right vocabulary: 
at what level should functions be black-boxed into 
primitives?  Because we are working at the level of 
circuits, modules can be as low level as single 
transistors and capacitors or as complex as fully pre-

programmed functions like the record/playback module.  
The more functionality is pre-assembled into condensed 
units, the more scaffolding the modules offer for 
creators to make more complex computational 
behaviors. However, if complex behaviors are too pre-
packaged, we run into the danger of removing 
programming from the activity altogether, leaving only 
simple plug-and-play parts.  The more low-level detail 
revealed to learners, the deeper their understanding of 
the electronics theory underlying their creations and 
the more access they have to controlling the materials’ 
behaviors. Ultimately there must be a balance between 
easily making complex final artifacts that work and 
revealing the circuit complexity to truly understand the 
raw computational material.  

CONCLUSION 
Coding through sticking tangible modules keeps 
programming in the materials domain where learners 
can physically tinker with computational concepts, a 
more natural form of manipulation than screen-based 
objects and text.  Both code and its results are 
embedded directly into circuit-building so that learners 
do not mentally and physically switch between hands-
on crafting with materials and procedural code on a 
screen. Keeping the modules in sticker form maintains 
the material and expressive affordances of paper.  
Rather than making circuits and programs that abstract 
into pure functionality, the ultimate products of code 
collages are personalized paper electronics artifacts.  As 
we continue to develop Code Collage, our ultimate goal 
is to broaden participation in technology creation by 
framing tangible computation as a new medium 
through which creators can express themselves.  Our 
hope is that learners and creators can one day sculpt 
with electricity as they might sculpt with clay.   
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